

Differentiable Beamforming for Ultrasound Autofocusing Walter Simson, Louise Zhuang, Sergio J. Sanabria, Neha Antil, Jeremy J. Dahl, Dongwoon Hyun Stanford University, Stanford, CA 94305 USA

Motivation

- Most, if not all clinical ultrasound scanners assume a constant sound speed.
- Local sound speed variations in the tissue cause phase aberrations, leading to a loss of image focus, geometric distortions, and reduced diagnostic efficacy.
- Estimated local sound speeds can be used to correct phase aberration and has the potential to be a key diagnostic biomarker.

Contributions

- We present differentiable beamforming for ultrasound autofocusing (DBUA), a physics-based framework for the rapid quantitative estimation of sound speed and phase aberration correction in heterogeneous tissue.
- We introduce common mid-point phase error from statistical and Fourier optics as a focusing criterion for pulse-echo sound speed estimation.
- DBUA optimizes the common mid-point phase error by differentiating through ultrasound beamforming of sub-apertures and updating sound speed maps via gradient descent.
- DBUA corrects phase aberration in both simulation and *in vivo* settings while simultaneously providing quantitative sound speed maps that can ∠ be used for diagnostics (e.g., NAFLD).

Method

Results

b

 Beamforming encompasses the process of digitally focusing a received radio-frequency (RF) signal *u* recorded on a phased array by sampling at a delayed time τ and coherently compounding the sampled signals.

 $u_{ij}(x_k) = u_{ij}\left(\tau(x_i, x_k) + \tau(x_k, x_j)\right) \qquad u(x_k) = \sum_{i=1}^{N_t} \sum_{j=1}^{N_r} u_{ij}(x_k)$

- Numerically differentiating beamforming via auto-differentiation is possible with modern numerical libraries, which are often used in deep learning applications.
- We investigate the optimization of a slowness map *s* (inverse of sound speed) given an image quality metric.

$$\mathbf{x}^{\star} = rgmin_{\mathbf{s}} \mathcal{L}(u(\mathbf{x}_k;\mathbf{s})), \qquad \Delta \mathbf{s} = \mathbf{s} - lpha rac{\partial}{\partial \mathbf{s}} \mathcal{L}(u(\mathbf{x}_k;\mathbf{s}))$$

 We explore the metrics of speckle brightness, coherence factor, and phase error of common mid-point sub-aperture pairs.

$$\begin{split} \mathrm{SB}(\mathbf{s}) &= \frac{1}{N_k} \sum_k |u(\mathbf{x}_k; \mathbf{s})| = -\mathcal{L}_{\mathrm{SB}}(\mathbf{s}) \quad \mathrm{CF}(\mathbf{s}) = \frac{1}{N_k} \sum_{k=1}^{N_k} \frac{|\sum_j \sum_i u_{ij}(\mathbf{x}_k; \mathbf{s})|}{\sum_j |\sum_i u_{ij}(\mathbf{x}_k; \mathbf{s})|} = -\mathcal{L}_{\mathrm{CF}}(\mathbf{s}) \\ & \Delta \phi_{ab}(\mathbf{x}_k) = \angle \mathbb{E}[u_a(\mathbf{x}_k; \mathbf{s}) u_b^*(\mathbf{x}_k; \mathbf{s})] \qquad \mathrm{PE}(\mathbf{s}) = \frac{1}{N_{(a,b)}} \sum_{(a,b)} |\Delta \phi_{ab}| = \mathcal{L}_{\mathrm{PE}}(\mathbf{s}) \\ & \mathbf{Proposed} \end{split}$$

a. Full-synthetic aperture acquisition

- b. Delay calculation with straight ray integration and beamforming
 - c. Calculation of objective function
 - d. Backpropagation through beamforming to slowness map
 - e. Update of sound speed map
- f. Continue from step b.

We show that DBUA corrects errors due to aberration while generating quantitative sound speed maps.

- DBUA displays increased resolution when compared to state-of-the-art sound speed reconstruction method CUTE [1].
- DBUA shows promising results on *in vivo* liver data. DBUA resolves fat and abdominal layers.
- DBUA with phase error leads to the lowest quantitative error value in heterogenous phantoms.

Phantom	Description	CUTE	Speckle	Coherence	Phase Error
		(baseline)	Brightness	Factor	(proposed)
1420	homogenous	21.6 ± 21.4	$3.9{\pm}3.3$	$3.2{\pm}2.6$	4.8 ± 3.5
1465	homogenous	11.7 ± 18.8	$4.5{\pm}4.9$	$5.3{\pm}4.6$	$4.5{\pm}3.5$
1480	homogenous	10.4 ± 18.5	$6.1{\pm}5.4$	$\textbf{4.1}{\pm}\textbf{4.2}$	$4.7{\pm}3.5$
1510	homogenous	10.8 ± 17.0	$6.1{\pm}7.0$	$\textbf{4.4}{\pm}\textbf{4.5}$	$4.8{\pm}3.6$
1540	homogenous	11.8 ± 15.8	$7.8{\pm}7.5$	$5.1{\pm}4.4$	$6.1{\pm}4.3$
1555	homogenous	11.4 ± 15.3	$5.7{\pm}6.7$	$5.8{\pm}4.7$	$5.9{\pm}4.3$
1570	homogenous	11.2 ± 14.8	$7.5{\pm}7.6$	$\textbf{4.9}{\pm\textbf{4.7}}$	$6.5{\pm}4.7$
Quadrant	Fig.3a	65.6 ± 36.3	$63.2 {\pm} 52.1$	$63.4{\pm}47.7$	$35.4{\pm}27.9$
Two layer	[17]	40.2 ± 34.1	$62.5 {\pm} 54.2$	$33.2{\pm}25.8$	$13.4{\pm}14.7$
Four layer	[17]	44.1 ± 27.5	$50.5{\pm}25.0$	$43.8 {\pm} 23.2$	29.0±26.5
Inclusion	[17]	14.3 ± 16.4	$8.3{\pm}7.5$	$7.5{\pm}5.9$	6.1±4.4
Inclusion layer	[17], Fig.3b	19.8 ± 18.1	16.3 ± 14.8	$15.0{\pm}11.1$	$7.5{\pm}5.0$

[1] Stähli, P., Kuriakose, M., Frenz, M. and Jaeger, M., 2020. Improved forward model for quantitative pulseecho speed-of-sound imaging. *Ultrasonics*, *108*, p.106168.

