
Differentiable Beamforming
for Ultrasound Autofocusing

Walter Simson⋆1[0000−0002−2801−8646], Louise Zhuang1[0000−0002−5677−4895],
Sergio J. Sanabria1[0000−0003−4786−4597], Neha Antil1[0000−0001−7896−9231],

Jeremy J. Dahl1[0000−0001−9877−452X], and
Dongwoon Hyun1[0000−0003−2625−8109]

Stanford University, Stanford, CA 94305 USA
{waltersimson, dongwoon.hyun}@stanford.edu

Abstract. Ultrasound images are distorted by phase aberration arising
from local sound speed variations in the tissue, which lead to inaccurate
time delays in beamforming and loss of image focus. Whereas state-of-
the-art correction approaches rely on simplified physical models (e.g.
phase screens), we propose a novel physics-based framework called dif-
ferentiable beamforming that can be used to rapidly solve a wide range
of imaging problems. We demonstrate the generalizability of differen-
tiable beamforming by optimizing the spatial sound speed distribution
in a heterogeneous imaging domain to achieve ultrasound autofocusing
using a variety of physical constraints based on phase shift minimization,
speckle brightness, and coherence maximization. The proposed method
corrects for the effects of phase aberration in both simulation and in-vivo
cases by improving image focus while simultaneously providing quanti-
tative speed-of-sound distributions for tissue diagnostics, with accuracy
improvements with respect to previously published baselines. Finally, we
provide a broader discussion of applications of differentiable beamform-
ing in other ultrasound domains.

Keywords: Ultrasound · Image reconstruction · Optimization.

1 Introduction

Ultrasound images are reconstructed by time sampling the reflected pressure
signals measured by individual transducer elements in order to focus at specific
spatial locations. The sample times are calculated so as to compensate for the
time-of-flight from the elements to the desired spatial locations, often by assum-
ing a constant speed of sound (SoS) in the medium, e.g., 1540 m/s. However, the
human body is highly heterogeneous, with slower SoS in adipose layers than in
fibrous and muscular tissues. If unaccounted for, these differences lead to phase
aberration, geometric distortions, and loss of focus and contrast [1]. This degra-
dation is a fundamental limitation of current ultrasound image reconstruction
and impacts downstream tasks such as diagnostics, volumetry, and registration.
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Historically, phase aberration has been described using simplified phase-
screen models [19, 5], which assume that distortions generated from an unknown
SoS can be modeled by a gross time delay offset at every element [1]. More
recently, several methods have been proposed to estimate SoS distribution of
the medium from aberration measurements as a step before actual image cor-
rection. A family of these methods still relies on simplified physical models of
wave propagation to derive tractable inverse problems. These include assum-
ing a horizontally layered medium [9] or coherent plane wavefront propagation
at different angulations [17]. To reinforce specific assumptions about SoS het-
erogeneity, regularization is often introduced, including total variation for focal
inclusion geometries [15] and Tikhonov regularization for smoothly varying lay-
ered SoS distributions [17, 14]. While these methods perform well for one class of
SoS inversion problems, it is challenging to generalize their applicability to arbi-
trary SoS distributions, which are generally found in clinical scenarios. Work has
been carried out to find more generalizable estimation based on training neural
network models to end-to-end learn SoS distributions or optimize the regular-
ization function basis [18, 4, 16]. However, these methods require thousands of
training instances, which can currently practically only be obtained from in-silico
simulations and show challenges generalizing to real data.

Recent developments in artificial intelligence have been facilitated by the re-
lease of open-source tensor libraries, which can perform automatic differentiation
of composable transformations on vector data. These libraries are the backbone
of complex neural network architectures that use automatic reverse-mode dif-
ferentiation (back-propagation) to iteratively optimize weights based on a set
of training instances. These libraries also simplify and optimize portability to
high-performance computing platforms. We hypothesize that such libraries can
likewise be extended to model the pipeline of ultrasound image reconstruction
as a composition of differentiable operations, allowing optimization based on a
single data instance.

In this work, we propose an ultrasound imaging paradigm that jointly achieves
sound speed estimation and image quality enhancement via differentiable beam-
forming. We formulate image reconstruction as a differentiable function of a
spatially heterogeneous SoS map, and optimize it based on quality metrics ex-
tracted from the final reconstructed images (Fig. 1).

2 Methods

2.1 Beamforming Multistatic Synthetic Aperture Data

In ultrasound imaging, radiofrequency data (RF) represents the time series signal
proportional to the pressure measured by each probe array sensor. A multistatic
synthetic aperture dataset contains the RF pulse-echo responses of every pair
of transmit and receive elements. We denote the signal due to the i-th transmit
element, and j-th receive element as uij(t). This signal can be focused to an
arbitrary spatial location xk by sampling uij(t) at the time corresponding to the
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Fig. 1. Differentiable beamforming method for ultrasound autofocusing. Part (a) shows
the initial full synthetic aperture data acquisition. The complete RF data is then used
for beamforming in part (b) with an initial estimate of slowness, and afterwards, a
desired loss is calculated in part (c). The loss is differentiated with respect to the
slowness, which is then updated and used for the next iteration of beamforming. This
process encapsulated in the box is then repeated until convergence is reached.

time-of-flight τ from the transmit element at xi to xk and back to the receive
element at xj , achieved via 1D interpolation of the RF signal:

uij(xk) = uij (τ(xi,xk) + τ(xk,xj)) . (1)

(We describe our time-of-flight model in greater detail below in Sec. 2.3.) The
interpolated signals are then summed across the transmit (Nt) and receive (Nr)
apertures to obtain a focused ultrasound image:

u(xk) =

Nt∑
i=1

Nr∑
j=1

uij(xk). (2)

This process of interpolation and summation is called delay-and-sum (DAS)
beamforming.

2.2 Differentiable Beamforming

DAS is composed of elementary differentiable operations and is consequently
itself differentiable. Therefore, DAS can be incorporated into an automatic dif-
ferentiation (AD) framework to allow for differentiation with respect to any
desired input parameters θ. For a given loss function L(u(xk;θ)) that measures
the “quality” of the beamforming, θ can be optimized using gradient descent to
identify the optimal θ⋆ using update steps ∆θ:

θ⋆ = argmin
θ

L(u(xk;θ)), ∆θ = θ − α
∂

∂θ
L(u(xk;θ)). (3)

This differentiable framework is flexible, providing many ways to parameter-
ize the beamforming. In this work, we will show the promise of differentiable
beamforming on the task of sound speed estimation by optimizing for slowness
s in a time of flight delay model (i.e. θ = s).
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2.3 Time of Flight Model

Here, we parameterize the slowness (i.e. the reciprocal of the sound speed) as a
function of space. Specifically, we define the slowness at a set of control points
as s = {s(xk)}k, which can be interpolated to obtain the slowness at arbitrary
x. The time-of-flight from x1 to x2 is the integral of the slowness along the path:

τ(x1,x2; s) =

∫
x1→x2

sdx. (4)

For simplicity and direct comparison with previous sound speed estimation mod-
els [17], a straight ray model of wave propagation is used.

2.4 Loss Functions for Sound Speed Optimization

Speckle Brightness Maximization Diffuse ultrasound scattering produces
an image texture called speckle. Speckle brightness can be used as a criterion of
focus quality [13]. Written as a loss, this is the negative average pixel magnitude:

SB(s) =
1

Nk

∑
k

|u(xk; s)| = −LSB(s). (5)

Coherence Factor Maximization Coherence factor [6, 11], also referred to as
the F criterion or “focusing criterion”, defined between 0 and 1, is the measure
of the coherent signal sum over the incoherent signal sum of the receive aper-
ture. When received signals are in focus (i.e. in equal phase), CF achieves the
maximum value of 1. We use the negative CF as a loss:

CF(s) =
1

Nk

Nk∑
k=1

∣∣∣∑j

∑
i uij(xk; s)

∣∣∣∑
j |
∑

i uij(xk; s)|
= −LCF(s). (6)

Phase-Error Minimization The van Cittert Zernike theorem of optics [12]
states that when imaging diffuse scatterers using a given transmit and receive
sub-aperture Ta and Ra (i.e. subset of the available array elements), the result-
ing signal is almost perfectly correlated with the signal from a second set of
apertures Tb and Rb when the two apertures share a common midpoint. The
measured phase-shift between both signals should approach zero when aberra-
tion is corrected. Fig. 2 illustrates this concept of phase error.

We estimate the phase shift as the complex angle between DAS signals ua

and ub of the respective subapertures (Ta,Ra) and (Tb,Rb), calculated using (2):

∆ϕab(xk) = ∠E[ua(xk; s)u
∗
b(xk; s)]. (7)

The phase shift error (PE) is defined for a set of all aperture pairs (a, b) with
common midpoint as

PE(s) =
1

N(a,b)

∑
(a,b)

|∆ϕab| = LPE(s). (8)
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Fig. 2. Phase error minimization in correlated common mid-point sub-apertures. Phase
error is computed as the angle of the cross correlation of complex beamformed signals
from different sub-apertures sharing a common midpoint. When the correct slowness
is used for the beamforming, the phase error is minimized.

3 Experimental Setup

3.1 Implementation of Differentiable Beamformer

A differentiable DAS beamformer was implemented in Python using JAX1 [3],
which provides out of the box GPU acceleration. DAS was parameterized by
the slowness map, where the time-of-flights for beamforming were calculated via
bilinear interpolation of the slowness along a discretized path from the trans-
mitting element to a location of interest and from the location to a receiving
element. The loss was computed on 5×5 pixel patches (λ/2 pixel spacing) on
a regular 15×21 grid spanning the image. The sound speed map was then op-
timized via gradient descent. For the phase error loss, 17-element subapertures
were used for beamforming. The beamformed data for every subaperture pair
with a common midpoint were cross-correlated with a 5 × 5 path to compute
the phase shift. We further leveraged acoustic reciprocity to combine the results
for reciprocal transmit/receive subapertures. This phase-shift measurement was
then used for the final phase error loss. The GPU-based implementation runs in
∼300 seconds for 300 iterations on an NVIDIA RTX A6000. The code for this
work can be found on GitHub2.

3.2 Comparison with state-of-the-art methods

As a baseline for performance comparison, the Computed Ultrasound Tomogra-
phy in Echo Mode (CUTE) method developed by Stähli et al. [17] was imple-
mented in MATLAB; this method has been shown to achieve sound speed recon-
struction of both layered and focal lesion geometries. The method shows some
similarities in using phase error minimization from different apertures (albeit in
the angular domain) and ray tracing paths. However, it relies on a coherent plane
wavefront propagation model and Tikhonov regularization to build a tractable
inverse problem.

1 https://github.com/google/jax
2 https://github.com/waltsims/dbua
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3.3 Datasets

In-silico The CUDA-accelerated binaries of the k-Wave simulation suite [10]
were used to generate multistatic RF data of 3D phantom model acquisitions.
To compare with the baseline [17], simulations were first generated using plane-
wave transmissions (115 transmits in steering range of -28.5◦:0.5◦:28.5◦) and
then converted to FSA format using REFoCUS [2] in the rtbf framework [7]. A
linear 128 element linear probe was simulated, with a pitch of 0.3 mm and a
center frequency of 4.8 MHz with a 100% bandwidth. The simulation domain
was 60 x 51 x 7.4 mm3. Iso-echoic phantoms were generated whereby the sound
speed was modulated relative to the density of a region so the average brightness
remained constant while the sound-speed variation introduced phase aberration.

In-vivo In-vivo data was collected on a Verasonics Vantage research system
with a L12-3v linear transducer (192 elements, 0.2 mm pitch, 5 MHz center fre-
quency). Three abdominal liver views, which contained subcutaneous adipose,
musculoskeletal tissue and liver parenchyma, were collected from a healthy vol-
unteer under a protocol approved by an institutional review board.

4 Results

Figure 3 shows SoS maps for in-silico phantom data. In the uncorrected (naive)
B-modes, regions of darkening and smeared speckle can be seen as acoustic
intensity diminishes due to aberration. In the quadrant phantom (a), a distinct
spatial skewing can be observed from left to right. On the corrected images,
image brightness is enhanced, iso-echogenic speckle distributions are revealed,
aberrated regions are reduced, and the boundary between quadrants shows a
congruent left-to-right and top-to-bottom transition. Similarly, in the inclusion
phantom (b), characteristic triangles can be seen to the left and right of the
inclusion in the naive B-mode. These triangular offshoots are artifacts produced
by total wave reflection on the lateral lesion boundaries when the ultrasound
wave encounters an SoS transition at grazing incidence. Moreover, diffraction
of waves through the lesion lead to aberration errors behind the lesion. In the
corrected B-mode, these dark regions are enhanced, and the image has an overall
more homogeneous brightness pattern.

The sound speed distributions generated with differentiable beamforming are
in general agreement with the ground truth sound speed distributions. Table 1
quantitatively compares the mean absolute error (MAE) and standard deviation
(std) with respect to the ground truth. For all phantoms, differential beam-
forming achieved lower (better) error metrics than the baseline. Homogeneous
phantoms were best reconstructed via CF loss function, while inhomogeneous
phantoms were best reconstructed via PE loss function.

Figure 4 shows preliminary results with differential beamforming for the
reconstructed in-vivo data. The SoS reconstruction successfully delineates ab-
dominal layers including subcutaneous adipose fat (average 1494 m/s), muscle
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(a) Quadrant phantom
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(b) Inclusion layer phantom

Fig. 3. The results of the imaging technique are shown. From left to right, each row
shows: 1) the ground truth sound speed; 2) the CUTE method as a baseline; 3) our pro-
posed phase error optimization; 4) a naive B-mode image formed assuming 1540 m/s;
and 5) the B-mode reconstructed according to our proposed sound speed estimates.
(a) The geometric distortion at the tissue interfaces is corrected. (b) The B-mode im-
age brightness becomes more homogeneous in the lower half of the image. Videos are
provided in the supplementary material.

Phantom Description
CUTE Speckle Coherence Phase Error

(baseline) Brightness Factor (proposed)

1420 homogenous 21.6±21.4 3.9±3.3 3.2±2.6 4.8±3.5
1465 homogenous 11.7±18.8 4.5±4.9 5.3±4.6 4.5±3.5
1480 homogenous 10.4±18.5 6.1±5.4 4.1±4.2 4.7±3.5
1510 homogenous 10.8±17.0 6.1±7.0 4.4±4.5 4.8±3.6
1540 homogenous 11.8±15.8 7.8±7.5 5.1±4.4 6.1±4.3
1555 homogenous 11.4±15.3 5.7±6.7 5.8±4.7 5.9±4.3
1570 homogenous 11.2±14.8 7.5±7.6 4.9±4.7 6.5±4.7
Quadrant Fig.3a 65.6±36.3 63.2±52.1 63.4±47.7 35.4±27.9
Two layer [17] 40.2±34.1 62.5±54.2 33.2±25.8 13.4±14.7
Four layer [17] 44.1±27.5 50.5±25.0 43.8±23.2 29.0±26.5
Inclusion [17] 14.3±16.4 8.3±7.5 7.5±5.9 6.1±4.4
Inclusion layer [17], Fig.3b 19.8±18.1 16.3±14.8 15.0±11.1 7.5±5.0

Table 1. Comparison of sound speed mean absolute error (MAE) ± standard error be-
tween state-of-the-art (CUTE) versus differential beamforming with speckle brightness,
coherence factor, and phase error objective functions. Two layer, four layer, inclusion
and inclusion layer definitions can be found in [17]. (figure 6a to 6e)
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(average 1551 m/s) and liver parenchyma (average 1530 m/s) in agreement with
the literature values [8].

Fig. 4. A sample of in-vivo data reconstructed with the estimated sound speed via dif-
ferentiable beamforming. Three layers consisting of subcutaneous adipose fat, muscle,
and liver parenchyma are visible from top to bottom.

5 Discussion and Conclusion

Differentiable beamforming can be used to solve for unknown quantities with
gradient descent. Here, we parameterized beamforming as a function of the slow-
ness and optimized with respect to several candidate loss functions, showing that
phase error was best for heterogeneous targets. The differentiable beamformer
simultaneously provided B-mode image correction and quantitative sound speed
characterization beyond the state-of-the-art across several challenging cases. Pre-
liminary in-vivo quantitative SoS data for liver was shown, which has direct
clinical applications such as in the noninvasive assessment of non-alcoholic fatty
liver disease, as well as image enhancement in general.

Importantly, the differentiable beamformer allows us to incorporate funda-
mental physics principles like wave propagation, reducing the number of param-
eters to optimize. In the future, more complex wave propagation physics, such as
refraction models, can be added to SoS optimization. In addition to sound speed,
this work can be readily adapted to a broad set of applications such as beam-
forming with flexible arrays, where element positions are unknown, or passive
cavitation mapping, where the origin of the signal is uncertain. Because the gra-
dients flow through the entire imaging pipeline, the differentiable beamformer is
also highly compatible with deep learning techniques. For instance, a model can
be trained in a self-supervised fashion to identify optimal sound speed updates
to accelerate convergence. Differentiable beamforming also enables the end-to-
end optimization of imaging parameters for downstream tasks in computer-aided
medical diagnostics.
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